167 research outputs found

    The SOS Platform: Designing, Tuning and Statistically Benchmarking Optimisation Algorithms

    Get PDF
    open access articleWe present Stochastic Optimisation Software (SOS), a Java platform facilitating the algorithmic design process and the evaluation of metaheuristic optimisation algorithms. SOS reduces the burden of coding miscellaneous methods for dealing with several bothersome and time-demanding tasks such as parameter tuning, implementation of comparison algorithms and testbed problems, collecting and processing data to display results, measuring algorithmic overhead, etc. SOS provides numerous off-the-shelf methods including: (1) customised implementations of statistical tests, such as the Wilcoxon rank-sum test and the Holm–Bonferroni procedure, for comparing the performances of optimisation algorithms and automatically generating result tables in PDF and formats; (2) the implementation of an original advanced statistical routine for accurately comparing couples of stochastic optimisation algorithms; (3) the implementation of a novel testbed suite for continuous optimisation, derived from the IEEE CEC 2014 benchmark, allowing for controlled activation of the rotation on each testbed function. Moreover, we briefly comment on the current state of the literature in stochastic optimisation and highlight similarities shared by modern metaheuristics inspired by nature. We argue that the vast majority of these algorithms are simply a reformulation of the same methods and that metaheuristics for optimisation should be simply treated as stochastic processes with less emphasis on the inspiring metaphor behind them

    Collaborative research and sharing data ahead of paper publication: A case study of De Montfort University’s Dr. Fabio Caraffini

    Get PDF
    Figshare data• By sharing his high-resolution, multispectral images prior to a paper publication on DMU Figshare, Fabio and his colleagues are building public engagement with their research. • Storing large amounts of data in DMU Figshare allows Fabio and his colleagues to link to that data in a paper, which they would have otherwise just had to describe in the body of the paper

    Using Optimisation Meta-Heuristics for the Roughness Estimation Problem in River Flow Analysis

    Get PDF
    Climate change threats make it difficult to perform reliable and quick predictions on floods forecasting. This gives rise to the need of having advanced methods, e.g., computational intelligence tools, to improve upon the results from flooding events simulations and, in turn, design best practices for riverbed maintenance. In this context, being able to accurately estimate the roughness coefficient, also known as Manning’s n coefficient, plays an important role when computational models are employed. In this piece of research, we propose an optimal approach for the estimation of ‘n’. First, an objective function is designed for measuring the quality of ‘candidate’ Manning’s coefficients relative to specif cross-sections of a river. Second, such function is optimised to return coefficients having the highest quality as possible. Five well-known meta-heuristic algorithms are employed to achieve this goal, these being a classic Evolution Strategy, a Differential Evolution algorithm, the popular Covariance Matrix Adaptation Evolution Strategy, a classic Particle Swarm Optimisation and a Bayesian Optimisation framework. We report results on two real-world case studies based on the Italian rivers ‘Paglia’ and ‘Aniene’. A comparative analysis between the employed optimisation algorithms is performed and discussed both empirically and statistically. From the hydrodynamic point of view, the experimental results are satisfactory and produced within significantly less computational time in comparison to classic methods. This shows the suitability of the proposed approach for optimal estimation of the roughness coefficient and, in turn, for designing optimised hydrological models

    Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients

    Get PDF
    Motivated by the limited work performed on the development of computational techniques for solving the nonlinear Schrödinger equation with time-dependent coefficients, we develop a modified Runge–Kutta pair with improved periodicity and stability characteristics. Additionally, we develop a modified step size control algorithm, which increases the efficiency of our pair and all other pairs included in the numerical experiments. The numerical results on the nonlinear Schrödinger equation with a periodic solution verified the superiority of the new algorithm in terms of efficiency. The new method also presents a good behaviour of the maximum absolute error and the global norm in time, even after a high number of oscillations

    An Optimisation-Driven Prediction Method for Automated Diagnosis and Prognosis

    Get PDF
    This article presents a novel hybrid classification paradigm for medical diagnoses and prognoses prediction. The core mechanism of the proposed method relies on a centroid classification algorithm whose logic is exploited to formulate the classification task as a real-valued optimisation problem. A novel metaheuristic combining the algorithmic structure of Swarm Intelligence optimisers with the probabilistic search models of Estimation of Distribution Algorithms is designed to optimise such a problem, thus leading to high-accuracy predictions. This method is tested over 11 medical datasets and compared against 14 cherry-picked classification algorithms. Results show that the proposed approach is competitive and superior to the state-of-the-art on several occasions

    An Optimisation-Driven Prediction Method for Automated Diagnosis and Prognosis

    Get PDF
    open access articleThis article presents a novel hybrid classification paradigm for medical diagnoses and prognoses prediction. The core mechanism of the proposed method relies on a centroid classification algorithm whose logic is exploited to formulate the classification task as a real-valued optimisation problem. A novel metaheuristic combining the algorithmic structure of Swarm Intelligence optimisers with the probabilistic search models of Estimation of Distribution Algorithms is designed to optimise such a problem, thus leading to high-accuracy predictions. This method is tested over 11 medical datasets and compared against 14 cherry-picked classification algorithms. Results show that the proposed approach is competitive and superior to the state-of-the-art on several occasions

    Regression Analysis of Macroeconomic Conditions and Capital Structures of Publicly Listed British Firms

    Get PDF
    Using an unbalanced panel of 922 non-financial companies publicly listed on the London Stock Exchange during January 1995 and September 2014, this article tests the predictions of Pecking Order Theory (POT), Trade-off Theory (TOT) and Market Timing Theory (MTT) of capital structure through the lens of macroeconomic conditions. We find strong evidence that leverage is negatively associated with the business cycle but positively related to stock market performance, which is consistent with POT. In addition, leverage is negatively related to financial market risk, as predicted by TOT. Furthermore, leverage is positively related to credit supply, which is in line with both the POT and TOT. Finally, there is no evidence in support of MTT. The above results are robust with respect to the measurement of macroeconomic variables, the choice of estimation methods and the inclusion of a dummy variable to account for the effect of the 2008 financial crisis. An important implication is that, because firms tend to be highly levered during business cycle downturns, expansionary fiscal and monetary policies to encourage more business borrowings may not be effective after all

    Driving in the Rain: A Survey toward Visibility Estimation through Windshields

    Get PDF
    Rain can significantly impair the driver’s sight and affect his performance when driving in wet conditions. Evaluation of driver visibility in harsh weather, such as rain, has garnered considerable research since the advent of autonomous vehicles and the emergence of intelligent transportation systems. In recent years, advances in computer vision and machine learning led to a significant number of new approaches to address this challenge. However, the literature is fragmented and should be reorganised and analysed to progress in this field. There is still no comprehensive survey article that summarises driver visibility methodologies, including classic and recent data-driven/model-driven approaches on the windshield in rainy conditions, and compares their generalisation performance fairly. Most ADAS and AD systems are based on object detection. Thus, rain visibility plays a key role in the efficiency of ADAS/AD functions used in semi- or fully autonomous driving. This study fills this gap by reviewing current state-of-the-art solutions in rain visibility estimation used to reconstruct the driver’s view for object detection-based autonomous driving. These solutions are classified as rain visibility estimation systems that work on (1) the perception components of the ADAS/AD function, (2) the control and other hardware components of the ADAS/AD function, and (3) the visualisation and other software components of the ADAS/AD function. Limitations and unsolved challenges are also highlighted for further research
    • …
    corecore